Google Scholar Profile (Dr. Wei Zhou)

Book Chapters:

[1] W. Zhou, J.Y. Suh, and T.W. Odom, “Novel Fabrication Methods for Optical Antennas”, book chapter in Optical Antennas, Eds. M. Agio, and A. Alù, Cambridge University Press (2013)


[3]  S. A. Safiabadi Tali, and W. Zhou, “Multiresonant plasmonics with spatial mode overlap: overview and outlook,” Nanophotonics 8, 1199-1225 (2019) [pdf]

[2]  W. Zhou, X. Dai, and C.M. Lieber, “Advances in Nanowire Bioelectronics,” Reports on Progress in Physics 80, 016701 (2017) [pdf]

[1] H. Gao, W. Zhou, and T. W. Odom, “Plasmonic Crystals: A Platform to Catalog Resonances from Ultraviolet to Near-infrared Wavelengths in a Plasmonic Library”, Adv. Funct. Mater. 19,1-11 (2009) [pdf]


[38] W. Nam, Y. Zhao, J. Song, S. A. S. Tali, S. Kang, W. Zhu, H. J. Lezec, A. Agrawal, P. J. Vikesland, W. Zhou, “Photothermal self-healing of gold nanoparticle–polystyrene hybrids”. J. Phys. Chem. Lett. 11, 9543–9551 (2020) [pdf]

[37] M. G. Daniel, J. Song, S. A. S. Tali, X. Dai, Wei Zhou, “Sub-10 nm Nanolaminated Al2O3/HfO2 Coatings for Long-term Stability of Cu Plasmonic Nanodisks in Physiological Environments”. ACS Applied Materials & Interfaces 12, 31952–31961 (2020) [pdf]

[36] J. Song, W. Cheng, M. Nie, X. He, W. Nam, J. Cheng, W. Zhou, “Partial Leidenfrost Evaporation-Assisted Ultrasensitive Surface-Enhanced Raman Spectroscopy in a Janus Water Droplet on Hierarchical Plasmonic Micro/Nanostructures”. ACS Nano 14, 9521–9531 (2020) [pdf]

[35] X. Ren, W. Nam, P. Ghassemi, J. S. Strobl, I. Kim, W. Zhou, M. Agah, “Scalable nanolaminated SERS multiwell cell culture assay”. Microsystems & Nanoengineering 6, 47 (2020) [pdf]

[34] Y. J. Cho, L. Kong, R. Islam, M. Nie, W. Zhou, K. Lu, “Photothermal self-healing of gold nanoparticle–polystyrene hybrids”. Nanoscale 12, 20726-20736 (2020) [pdf]NP

[33] W. Nam, X. Ren, S. A. Safiabadi Tali, P. Ghassemi, I. Kim, M. Agah, and W. Zhou, “Refractive-Index-Insensitive Nanolaminated SERS Substrates for Label-Free Raman Profiling and Classification of Living Cancer Cells”. Nano Lett. 19, 7273-7281 (2019)  [pdf]


[32] J. Song, W. Nam, and W. Zhou, “Scalable High‐Performance Nanolaminated SERS Substrates Based on Multistack Vertically Oriented Plasmonic Nanogaps”. Adv. Mat. Tech. 4, 1800689 (2019) [pdf]

2019 NL SERS

[31] H.Wei, W. Leng, J. Song, M. R. Willner, L. C. Marr, W. Zhou, and P. J. Vikesland, “Real-Time Monitoring of Ligand Exchange Kinetics on Gold Nanoparticle Surfaces Enabled by Hot Spot-Normalized Surface-Enhanced Raman Scattering”. Anal. Chem. 53, 575–585 (2019)  [pdf]


[30] J. Song, and W. Zhou, “Multiresonant Composite Optical Nanoantennas by Out-of-plane Plasmonic Engineering”. Nano Lett. doi:10.1021/acs.nanolett.8b01467 (2018) [pdf]

2018 NL

[29] H.Wei, W. Leng, J. Song, M. R. Willner, L. C. Marr, W. Zhou, and P. J. Vikesland, “Improved Quantitative SERS Enabled by Surface Plasmon Enhanced Elastic Light Scattering”. Anal. Chem. 90, 3227–3237 (2018) [pdf] 2018 AC

[28] H.Wei, A. McCarthy, J. Song, W. Zhou, and P. J. Vikesland, “Quantitative SERS by hot spot normalization – surface-enhanced Rayleigh band intensity as an alternative evaluation parameter for SERS substrate performance”. Faraday Discuss. 205, 491-504 (2017) [pdf]

2017 Faraday

[27] N. Gao,* T. Gao,* X. Yang, X. Dai, W. Zhou, A. Zhang, and C. M. Lieber, “Specific Detection of Biomolecules in Physiological Solutions using Graphene Transistor Biosensors”. Proc. Natl. Acad. Sci. USA, 113, 14633-14638 (2016) (*equal contribution) [pdf]


[26]  X. Dai,* W. Zhou,* T. Gao, J. Liu, and C.M. Lieber, “Three-dimensional Mapping and Regulation of Action Potential Propagation in Nanoelectronics Innervated Tissues,” Nature Nanotechnology 11, 776–782 (2016) (*equal contribution) [pdf]

cardiac patch

[25] C. Xie,* J. Liu,* T.-M. Fu,* X. Dai, W. Zhou, and C.M. Lieber, “Three-dimensional Macroporous Nanoelectronic Networks as Minimally Invasive Brain Probes,” Nature Materials 14, 1286–1292 (2015) (*equal contribution)[pdf]flexible brain probe [24] N. Gao,* W. Zhou,* X. Jiang, G. Hong, T.-M. Fu, and C. M. Lieber, “General Strategy for Biodetection in High Ionic Strength Solutions Using Transistor-based Nanoelectronic Sensors”. Nano Lett. 15, 2143-2148 (2015) (*equal contribution)[pdf]

NW sensing

[23] S. Li, W. Zhou, D. Buchholz, J. B. Ketterson, L. Ocola, K. Sakoda, and R. H. Chang, “Ultra-sharp Plasmonic Resonances from Monopole Optical Nanoantenna Phased Arrays” Appl. Phys. Lett. 104, 231101 (2014)[pdf]

ITO nanoantenna

[22] W. Zhou,* X. Dai,* T. Fu, C. Xie, J. Liu, and C.M. Lieber, “Long-term Stability of Nanowire Nanoelectronics in Physiological Environments” Nano Lett. 14, 1614-1619 (2014) (*equal contribution)[pdf]

NW biochemical stability

[21] S. Li, P. Guo, D. Buchholz, W. Zhou, T.W. Odom, J. B. Ketterson, L. Ocola, K. Sakoda, and R. H. Chang, “Plasmonic-Photonic Mode Coupling in Indium-tin-oxide Nanorod Arrays” ACS Photonics 1, 163-172 (2014)[pdf]

ITO array

[20] W. Zhou, M. Dridi, J.Y. Suh, C.H. Kim, D.T. Co, M.R. Wasielewski, G.C. Schatz, and T.W. Odom, “Lasing Action in Strongly Coupled Plasmonic Nanocavity Arrays” Nature Nanotechnology 8, 506-511 (2013)[pdf]

NP array lasers

[19] J. Liu, C. Xie, X. Dai, L. Jin, W. Zhou, and C.M. Lieber, “Multifunctional Three-dimensional Macroporous Nanoelectronic Networks for Smart Materials,” Proc. Natl. Acad. Sci. USA, 110, 6694-6699 (2013)[pdf]

nanoelectronics network

[18] W. Zhou, J.Y. Suh, Y. Hua, and T.W. Odom, “Hybridization of Localized and Guided Modes in 2D Metal-Insulator-Metal Nanocavity Arrays” J. Phys. Chem. C 117, 2541-2546 (2013)[pdf] hybridization

[17] J.Y. Suh, C.H. Kim, W. Zhou, M.D. Huntington, D.T. Co, M.R. Wasielewski, and T.W. Odom, “Plasmonic Bowtie Nanolasers Arrays” Nano Lett. 12, 5769-5774 (2012)[pdf]

bowtie array lasing

[16] S. M. Lubin, W. Zhou, A. J. Hryn, M.D. Huntington, and T.W. Odom, “High-Rotational Symmetry Lattices Fabricated by Moire Nanolithography” Nano Lett. 12, 4948-4952 (2012)[pdf] plasmonic quacrystals[15] S.R.C. Vivekchand , C.J. Engel, S. M. Lubin, M.G. Blaber, W. Zhou, J.Y. Suh, G.C. Schatz, and T.W. Odom, “Liquid Plasmonics: Manipulating Surface Plasmon Polaritons via Phase Transitions” Nano Lett. 12, 4324-4328 (2012)[pdf]

liquid plasmonic crystals

[14] Y. Hua, J.Y. Suh, W. Zhou, M.D. Huntington, and T.W. Odom, “The Talbot Effect beyond the Paraxial Limit at Optical Frequencies” Opt. Express 20, 14284-14291 (2012)[pdf]

plasmonic talbot effect

[13] W. Zhou, Y. Hua, M.D. Huntington, and T.W. Odom, “Delocalized Lattice Plasmon Resonances Show Dispersive Quality Factors” J. Phys. Chem. Lett. 3, 1381-1385 (2012) [pdf]

lattice plasmons

[12] E. A. You, W. Zhou, J. Y. Suh, M. D. Huntington, and T. W. Odom, “Polarization-Dependent Multipolar Plasmon Resonances in Anisotropic Multiscale Au Particles” ACS Nano 6, 1786-1794 (2012)[pdf]

polarization dependence

[11] J.Y. Suh, M.D. Huntington, C.H. Kim, W. Zhou, M.R. Wasielewski, and T.W. Odom, “Extraordinary Nonlinear Absorption in 3D Bowtie Nanoantennas” Nano Lett. 12, 269-274 (2012)[pdf] nonlinear plasmonics

[10] S. Li, P. Guo, L. Zhang, W. Zhou, T.W. Odom, T. Seideman, J. B. Ketterson, and R. H. Chang, “Infrared Plasmonics with Indium Tin Oxide Nanorod Arrays” ACS Nano 5, 9161-9170 (2011)[pdf] ITO infrared plasmonics[9] W. Zhou, and T.W. Odom, “Tunable Subradiant Lattice Plasmons by Out-of-Plane Dipolar Interactions” Nature Nanotechnology 6, 423-427 (2011)[pdf]

height dependence

[8] M.H. Lee, M.D. Huntington, W. Zhou, J.-C. Yang, and T.W. Odom, “Programmable Soft Lithography: Solvent-assisted Nanoscale Embossing” Nano Lett. 11, 311-315 (2010)[pdf]

embossing[7] J.C. Yang, H. Gao, J.Y. Suh, W. Zhou, M.H. Lee, and T.W. Odom, “Enhanced Optical Transmission Mediated by Localized Plasmons in Anisotropic, 3D Nanohole Arrays” Nano Lett. 10, 3173-3178 (2010)[pdf]

3d nanostructure

[6] W. Zhou, H. Gao, and T. W. Odom, “Toward Broadband Plasmonics: Tuning Dispersion in Rhombic Plasmonic Crystals” ACS Nano 4, 1241-1247 (2010)[pdf]

symmetry breakiing

[5] J. He, W. Zhou, X. Zhou, X. Zhong, X. Zhang, P. Wan, B. Zhu, and W. Chen, “The Anatase Phase of Nanotopography Titania Plays an Important Role on Osteoblast Cell Morphology and Proliferation”, J. Mater. Sci.-Mater. Med. 19, 3465-3472 (2008)[pdf]

tio2 cell compatibility

[4] W. Zhou, X. Zhong, X. Wu, L. Yuan, Q. Shu, Y. Xia, X. Zhong, and K. Ostrikov, “Plasma-controlled Nanocrystallinity and Phase Composition of TiO2: A Smart Way to Enhance Biomimetic Response”, J. Biomed. Mater. Res. Part A 81, 453-464 (2007)[pdf]

tio2 HA bioactivity

[3] W. Zhou, X. Zhong, X. Wu, L. Yuan, Q. Shu, W. Li, and Y. Xia, “Low Temperature Deposition of Nanocrystalline TiO2 Films: Enhancement of Nanocrystal Formation by Energetic Particle Bombardment”, J. Phys. D-Appl. Phys. 40, 219-226 (2007)[pdf] (IF 2.77)

tio2 crystalline film

[2] W. Zhou, X. Zhong, X. Wu, L. Yuan, Z. Zhao, H. Wang, Y. Xia, Y. Feng, J. He, and W. Chen, “The Effect of Surface Roughness and Wettability of Nanostructured TiO2 Film on TCA-8113 Epithelial-like Cells”, Surf. Coat. Technol. 200, 6155–6160 (2006)[pdf]

tio2 cell

[1] W. Zhou, X. Zhong, X. Wu, L. Yuan, Q. Shu, and Y. Xia, “Structural and Optical Properties of Titanium Oxide Thin Films Deposited on Unheated Substrate at Different Total Pressures by Reactive DC Magnetron Sputtering with Substrate Bias”, J. Korean Phys. Soc. 49, 2168–2175 (2006)

tio2 optical properties

Comments are closed.